Parameterized Algorithms for Recognizing Monopolar and 2-Subcolorable Graphs
نویسندگان
چکیده
We consider the recognition problem for two graph classes that generalize split and unipolar graphs, respectively. First, we consider the recognizability of graphs that admit a monopolar partition: a partition of the vertex set into sets A,B such that G[A] is a disjoint union of cliques and G[B] an independent set. If in such a partition G[A] is a single clique, then G is a split graph. We show that in O(2 · k3 · (|V (G)| + |E(G)|)) time we can decide whether G admits a monopolar partition (A,B) where G[A] has at most k cliques. This generalizes the linear-time algorithm for recognizing split graphs corresponding to the case when k = 1. Second, we consider the recognizability of graphs that admit a 2-subcoloring: a partition of the vertex set into sets A,B such that each of G[A] and G[B] is a disjoint union of cliques. If in such a partition G[A] is a single clique, then G is a unipolar graph. We show that in O(k2k+2 · (|V (G)|2 + |V (G)| · |E(G)|)) time we can decide whether G admits a 2-subcoloring (A,B) where G[A] has at most k cliques. This generalizes the polynomial-time algorithm for recognizing unipolar graphs corresponding to the case when k = 1. We also show that in O∗(4k) time we can decide whether G admits a 2-subcoloring (A,B) where G[A] and G[B] have at most k cliques in total. To obtain the first two results above, we formalize a technique, which we dub inductive recognition, that can be viewed as an adaptation of iterative compression to recognition problems. We believe that the formalization of this technique will prove useful in general for designing parameterized algorithms for recognition problems. Finally, we show that, unless the Exponential Time Hypothesis fails, no subexponential-time algorithms for the above recognition problems exist, and that, unless P=NP, no generic fixed-parameter algorithm exists for the recognizability of graphs whose vertex set can be bipartitioned such that one part is a disjoint union of k cliques. 1998 ACM Subject Classification F.2.0 Analysis of Algorithms and Problem Complexity, G.2.2 Graph Theory
منابع مشابه
Recognizing Polar Planar Graphs Using New Results for Monopolarity
Polar and monopolar graphs are natural generalizations of bipartite or split graphs. A graph G = (V,E) is polar if its vertex set admits a partition V = A∪B such thatA induces a complete multipartite and B the complement of a complete multipartite graph. If A is even a stable set then G is called monopolar. Recognizing general polar or monopolar graphs is NP-complete and, as yet, efficient reco...
متن کاملOn H-Topological Intersection Graphs
Biró, Hujter, and Tuza introduced the concept of H-graphs (1992), intersection graphs of connected subgraphs of a subdivision of a graph H. They naturally generalize many important classes of graphs, e.g., interval graphs and circular-arc graphs. Our paper is the first study of the recognition and dominating set problems of this large collection of intersection classes of graphs. We negatively ...
متن کاملGraph Subcolorings: Complexity and Algorithms
In a graph coloring, each color class induces a disjoint union of isolated vertices. A graph subcoloring generalizes this concept, since here each color class induces a disjoint union of complete graphs. Erd˝ os and, independently, Albertson et al., proved that every graph of maximum degree at most 3 has a 2-subcoloring. We point out that this fact is best possible with respect to degree constr...
متن کاملLinear Recognition of Almost Interval Graphs
Give a graph class G and a nonnegative integer k, we use G+kv, G+ke, and G−ke to denote the classes of graphs that can be obtained from some graph in G by adding k vertices, adding k edges, and deleting k edges, respectively. They are called almost (unit) interval graphs if G is the class of (unit) interval graphs. Almost (unit) interval graphs are well motivated from computational biology, whe...
متن کاملOn the Parallel Parameterized Complexity of the Graph Isomorphism Problem
In this paper, we study the parallel and the space complexity of the graph isomorphism problem (GI) for several parameterizations. Let H = {H1,H2, · · · ,Hl} be a finite set of graphs where |V (Hi)| ≤ d for all i and for some constant d. Let G be an H-free graph class i.e., none of the graphs G ∈ G contain any H ∈ H as an induced subgraph. We show that GI parameterized by vertex deletion distan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Syst. Sci.
دوره 92 شماره
صفحات -
تاریخ انتشار 2016